

POWERING **SUSTAINABLE** FUTURES Diesel Fights Back: Innovations in Traditional Engines

Dr. Andy Noble 20 October 2020

CHALLENGES FOR PROPULSION ON & OFF ROAD

TECHNOLOGY

STRATEGY

Zero Carbon Enabling decarbonisation roadmap

Zero Environmental Impact Full Life Cycle

Zero Pollution No pollution produced at point of use

Business Case Address economic viability of technologies Zero carbon solutions must be found

Over total life cycle developmentmanufacture-usage-end of life the Environmental Impact must be minimised

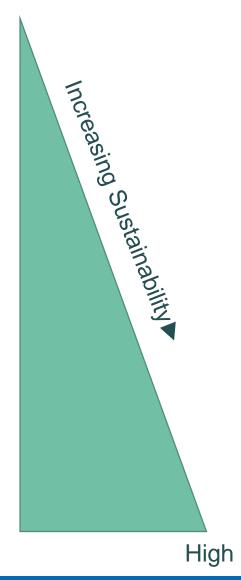
> The propulsion system should produce no harmful emissions during operation

The business case for the total cost of ownership should be viable for manufacturers and operators

CHALLENGES

õ

DRIVERS


POTENTIAL PROPULSION SOLUTIONS

		Zero Carbon	Zero Env. Impact	Zero Pollution at source	Business Case
	Battery Electric	Yes, if renewable electricity	Battery lifecycle a challenge	Yes	Battery cost/weight major challenge
4	Direct Electrical Supply	Yes, if renewable electricity	Low impact	Yes	Infrastructure major challenge
		Yes, if renewable hydrogen	Rare metals required. Also has battery	Yes	Fuel Cell cost major challenge
	Conventional ICE	Challenge if fossil fuel used	Challenge if fossil fuel used	Pollution control under all conditions a challenge	Good, current benchmark
H₂► ແ¯H LOOO	Sustainable ICE	Yes, if renewable fuel used	Good if renewable fuel used		Minor challenges - ICE conversion

TOWARDS A SUSTAINABLE ICE

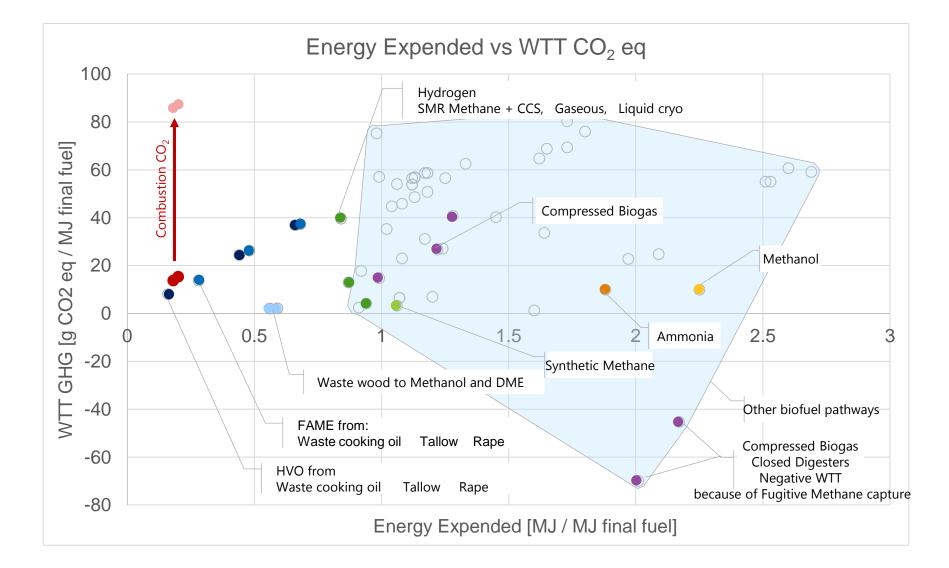
Incremental improvements	 Friction reduction, reduce thermal losses, waste heat recovery Efficiency improvement η >> 50% Emission controls improvement => Euro VII, NRMM Stage VI On-board monitoring (OBM) of emissions and in-service checks
Drop-in sustainable fuels	Bio-fuelsE-fuels
Radical improvements	 Opposed piston engines η ≈ 55% Split cycle engines η ≈ 60%
Fully sustainable fuels	Hydrogen fuelled ICE plus high efficiency emission controls

OCTOBER **2020**

INCREMENTAL: 10-15% LESS CO₂ & EUVII / CARB27


40T / Class 8 Long Distance Truck

- Engine
 - 350 400 kW
 - 11 13 L
 - Operation dominated by mid speed and mid load
- NOx emissions at EUVII/CARB27 with SCR


Expected Heavy Duty Diesel Engine Technology for 2030

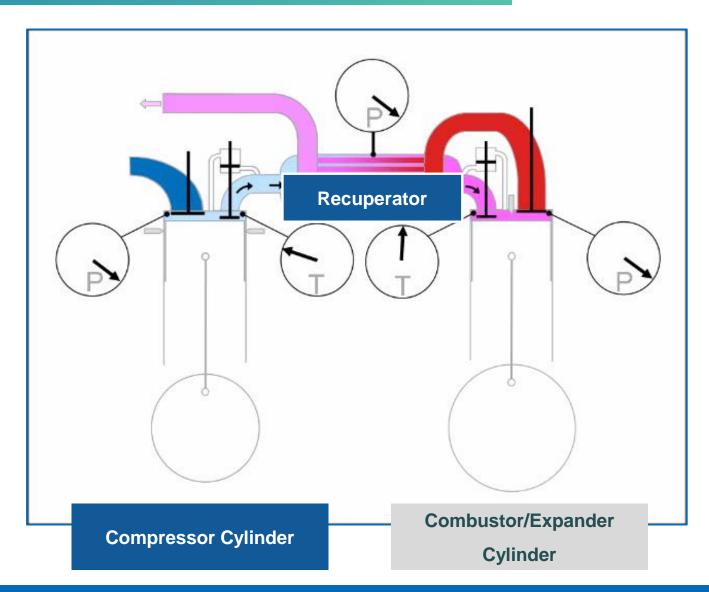
- Peak cylinder pressure = 280 bar
- EGR rate = ~20%
- Fuel injection pressure = 2800 bar, Injection rate shaping
- Variable valve actuation with lost motion
- Variable oil & water pumps
- Part load cylinder deactivation
- CGI block and head, steel pistons

DROP-IN / GASEOUS BIO- & E-FUEL OPTIONS

RADICAL: SPLIT CYCLE ICEs FOR η UP TO 60%

ThermoPower

<SULEV, >50% Efficiency


- Dedicated Cold & Hot cylinders
 of unequal size
- Insulation of hot cylinder
- **Recuperation** of exhaust energy
- Low-NOx Cool Combustion enabled by dense sonic intake air

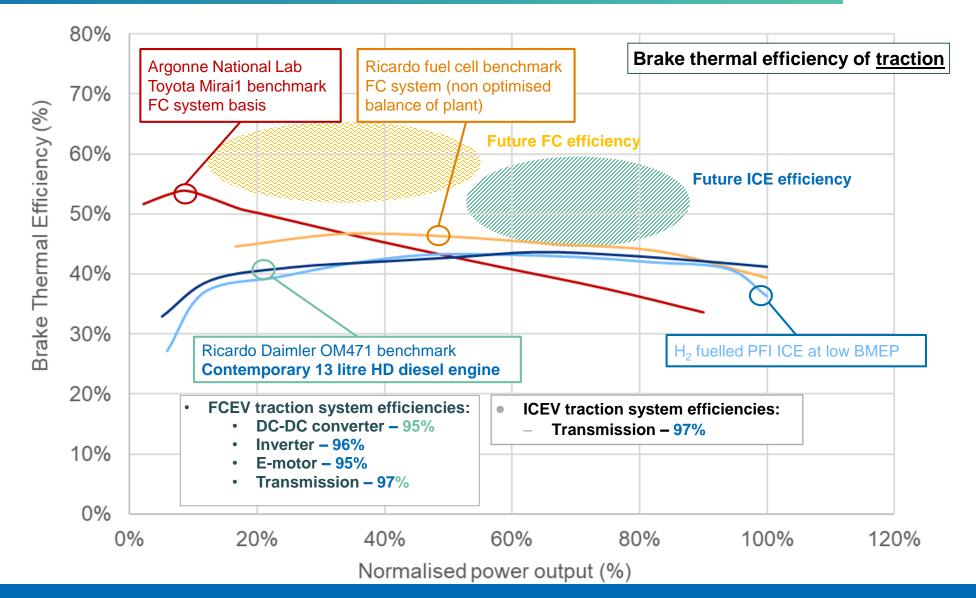
CryoPower

Add liquid nitrogen to Cold cylinder ~ZEV, ~60% Efficiency

 Near-isothermal compression from Liquid N₂ injected

Unprecedented thermal efficiencies with near zero emissions

HYDROGEN ICE AND FUEL CELLS COMPARED



H ₂ ICE status	Benefit to:	Fuel cell (PEMFC) status
~45%+ expectation for DI H_2 fuelled ICE	\rightarrow	60%+ electrical efficiency (peak at 25% load)
Low engine-out NOx enabled by lean low temperature combustion Trace oil derived emissions	\rightarrow	No emissions (if pure H ₂ fuel)
Substantial NVH effort	\rightarrow	Quiet
Lower costs and risks	\leftarrow	Expensive with technology risks
Tolerant to minor fuel contaminants	\leftarrow	Fuel purity required
Robust to small particles	\leftarrow	Sensitive to air contamination
Diesel ICEs durable for >10,000 hours H ₂ ICEs expected to be similar	\leftarrow	Durability & reliability
High grade heat more easily managed	÷	Thermal management of low grade heat for PEMFC*

Hydrogen fuelled combustion engines offer a gateway into the Hydrogen Economy and route to Zero Carbon with Fuel Cells being the long term goal

EFFICIENCY POTENTIAL OF H₂ICE AND FC

POWERING SUSTAINABLE FUTURES

RICARDO

CONCLUSIONS

- Power Systems for Commercial and Off Highway applications face Major Challenges to move towards the Goals of:
 - Zero Carbon
 - Zero Environmental Life Cycle Impact
 - Zero Emissions at Point of Use
 - Viable business case for the manufacturers and end users
- Full Battery-Electric power, Fuel Cells and Direct Electrical supply may be Long Term solutions but have Major Cost and Infrastructure Disadvantages in the Medium Term
- Internal Combustion Engines offer a Pathway Towards these Goals through
 - Incremental developments of Diesel Engines to Reduce Pollution and Improve Efficiency
 - Bio- and E-fuels to reduce the carbon footprint
 - Radical Developments such as Split Cycle for Major Gains in Thermal Efficiency
 - Zero-carbon and Near Zero Pollution Fuels including Hydrogen

